If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-12=116
We move all terms to the left:
8x^2-12-(116)=0
We add all the numbers together, and all the variables
8x^2-128=0
a = 8; b = 0; c = -128;
Δ = b2-4ac
Δ = 02-4·8·(-128)
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4096}=64$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-64}{2*8}=\frac{-64}{16} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+64}{2*8}=\frac{64}{16} =4 $
| 5(9x-6)=15 | | 5(2x+4)=15. | | y-0.75y=555 | | 16+2x=75 | | 64=-7t+8 | | 3y+10,5-12y=34,5+3y+24 | | -2q−10=-q−3 | | 115-u=262 | | -5a+3a-9=4a+7 | | 112-v=208 | | 9z-42=6z+3 | | -3−5g=-6g | | 68=5v-12 | | -5+8c=8c−5 | | -9n=-8n−6 | | -4z−9=-9−4z | | 8h+6=6+8h | | x=43+x=32 | | -2t+8t=6t | | 5(y-9)=-55 | | y−7=y+8 | | 3y+7=2y+18 | | 43x=32 | | 9-8z=91 | | X²+15x+36=0 | | -7x+3+8x=11-31 | | 2q+3=15 | | -2=5-7v | | 3y+140,5-12y=34,5+3y+24 | | -4p-6=22 | | 17+m=72 | | 6(8+x)=5(x-9) |